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A model is developed to investigate the process which leads to the formation of sand
waves in shallow tidal seas characterized by a heterogeneous sea bed composition.
The main goal of the analysis is the evaluation of the effects that a graded sediment
has on the formation of the bottom forms and the investigation of the sorting process
induced by the growth of the bottom forms. The analysis is based on the study of the
stability of the flat bed configuration, i.e. small amplitude perturbations are added
to the flat bottom and a linear analysis of their time development is made. For an
oscillatory tidal current dominated by one tidal constituent, the results show that the
graded sediment can stabilize or destabilize the flat bottom configuration with respect
to the uniform sediment case, depending on the standard deviation σ ∗ of the grain
size distribution and on the ratio r̂ between the horizontal tidal excursion and the
water depth. For moderate values of r̂ , i.e. values just larger than the critical value for
which the sediment is moved and sand waves appear, the presence of a sand mixture
stabilizes the flat bed. On the other hand, for large values of r̂ , the mixture has a
destabilizing effect. In both cases the effect that a sand mixture has on the stability of
the flat bed configuration is relatively small. Moreover, for moderate values of r̂ , the
fine fraction of the mixture tends to pile up at the crests of the bottom forms while
the coarse fraction moves towards the troughs. For large values of r̂ , the grain size
distribution depends on the value of σ ∗. The results are physically interpreted and
provide a possible explanation of the apparently conflicting field observations of the
grain size distribution along the sand wave profile, carried out in the North Sea.

1. Introduction
Recently, theoretical models have been developed to analyse the effects of graded

sediments on the formation of large-scale tidal bed forms (e.g. sand banks, tidal sand
ridges, sand waves).

These studies have been motivated by field surveys which show that quite often
the sea bottom is made up of sediment mixtures characterized by a wide probability
density distribution. Moreover, field observations reveal spatial variations in the
mean grain size along tidal bed forms, indicating sorting processes (Terwindt 1971;
Swift et al. 1978; Antia 1996; Van Lancker & Jacobs 2000; Roos et al. 2007a). As
pointed out by Walgreen, De Swart & Calvete (2004), a well-documented example
is the Middelkerke Bank along the Belgian coast (Houthuys et al. 1994; Lanckneus,
De Moor & Stolk 1994; Vincent, Stolk & Porter 1998), where the distribution of the
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mean grain size shows an accumulation of the coarser sediment on the crests and
of the finer sediment in the troughs. Data gathered from the more seaward located
Kwinte Bank (Gao et al. 1994) indicate a similar grain size pattern and variations
in the mean grain size are found also for the more onshore located coastal banks
(Van Lancker 1999). As described by Roos et al. (2007a), an overview of the grain
size patterns over tidal sand waves in the southern part of the North Sea shows less
persistent trends. Indeed, at some locations (site 1, near Zandvoort; site 2, offshore of
Egmond aan Zee; site 4, near Hoek van Holland) the medium grain size at the crests
is coarser than that at the troughs but at other locations (site 3, on Brown Bank;
site 5, on Thorton Bank) the sediment is coarser at the troughs. Note that the site
numbers correspond to those shown in figure 16. Similar field data are described in
Terwindt (1971) and Van Lancker & Jacobs (2000).

To investigate the formation of tidal sand ridges, Walgreen et al. (2004) considered
the time development of bottom perturbations on an along-shore uniform continental
shelf. A semi-infinite domain is introduced, which is bounded on the landward side
by the shoreface and is characterized by a bathymetry that has a constant slope
close to the coast while the water depth becomes constant further offshore. The
morphodynamic system is driven by an oscillatory tidal current which is assumed
to be parallel to the coastline. In this case the growth of the bottom perturbations
leads to the formation of tidal sand ridges and the results obtained by Walgreen et al.
indicate that the growth and the migration rate of the bottom forms increase if a
bimodal mixture replaces a well-sorted sediment, even though the wavelength of the
ridges remains practically unchanged. Moreover, for a symmetrical tidal current, the
coarse sediment is found to pile up at the crests of the ridges while the fine sediment
is found in the troughs.

Roos et al. (2007b) investigated the effects of a graded sediment on the growth
of the large-scale bottom forms (sand banks) which are generated by tidal currents
on a continental shelf characterized by an average constant water depth. Similar
to the results of Walgreen et al. (2004), the results obtained by Roos et al. (2007b)
show that the growth rate of the bottom forms increases, if compared to the case of
the uniform sediment. However, the preferred wavelength and the ridge orientation
remain unchanged. Moreover, the coarse sediment fraction tends to accumulate at
the bank crests.

During the last decade a lot of morphodynamic models have been developed to
investigate and simulate sand wave dynamics because of their strong interference with
human activities in shelf seas (Besio et al. 2008). However, a large number of these
models (a.o. Hulscher 1996; Gerkema 2000; Besio, Blondeaux & Frisina 2003; Besio,
Blondeaux & Vittori 2006) consider a uniform homogeneous sediment. As previously
described, field observations at various locations in the North Sea indicate that the
mean grain size varies along the bed form profile (Schüttenhelm 2002; Passchier &
Kleinhans 2005) and laboratory experiments (Foti & Blondeaux 1995b) indicate that
the grain sorting processes can affect the characteristics and dynamics of bottom
forms. Hence, recently, Roos et al. (2007a) have investigated the time development of
sand waves which appear in a sediment mixture. Roos et al. used a numerical model
based on that of van den Berg & Van Damme (2005) extending it by introducing (i)
the active layer approach of Hirano (1971), (ii) a fractional calculation of the sediment
transport and (iii) hiding/exposure effects. The numerical results indicate that, starting
from a sinusoidal shape, sand waves evolve towards an equilibrium profile which has
peaked crests and flattened troughs. The growth of sand waves is accompanied by a
continuous redistribution of the fine and coarse sediments and the concentration of
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the coarse grains increases at the crests while the sediment in the troughs remains well
mixed. Even though the model is unable to account for the variation of the length of
the bottom forms, it takes into account nonlinear effects and can describe the growth
of the amplitude of sand waves till large values are attained. In this respect, the model
of Roos et al. is a powerful tool to analyse the morphodynamic process under invest-
igation. However, the model is computationally expensive and the investigation of the
parameter space implies high costs. For example, it is difficult to determine the effects
that a sediment mixture has on the wavelength of the most unstable bottom mode.

In the following we describe a model able to investigate the initial stage of sand
wave formation when a heterogeneous sediment is considered. The study is aimed
at describing the effects that a sediment mixture has on the growth of tidal sand
waves and at investigating the grain size distribution along the bed forms to reveal
the basic mechanisms controlling the sorting process. The analysis is based on the
study of the stability of the flat bottom, i.e. small bottom perturbations of the flat
configuration are considered and a linear analysis of their growth is made. To describe
the hydrodynamics and the morphodynamics of the tidal sea, the model proposed by
Blondeaux & Vittori (2005a, b) is used and modified to take into account the presence
of a graded sediment.

The procedure used in the rest of the paper is as follows. In the next section we
formulate the hydrodynamic and morphodynamic problems. In § 3, the interaction of
the tidal current with an arbitrary bottom perturbation is studied and the conditions
leading to the appearance of sand waves are determined. Moreover, the grain sorting
process along the bottom forms is analysed. Next, the results are described and
physically interpreted in § 4. In § 5, the theoretical predictions are compared with field
observations carried out in the North Sea. Finally, some conclusions are drawn in § 6.

2. Model formulation
A local model is used to consider the flow-topography interaction in a shallow tidal

sea. The flow domain consists of a constant average water depth h∗
0 and is horizontally

unbounded (hereinafter a star denotes dimensional quantities). First, we formulate
the morphodynamic problem, in particular we specify how the model accounts for the
heterogeneity of the sediment mixture. Then the hydrodynamic problem is described.

2.1. Morphodynamic problem

A tidal sea the sea bed of which is assumed to consist of a cohesionless sediment
mixture of constant density ρ∗

s and porosity por is considered. The sediment mixture
is described by introducing a finite number N of distinct grain size classes. Each grain
size class lays within the sand region and is characterized by a grain size diameter
d∗

n with associated volume fraction pn (n= 1, 2, . . . , N). Thus, the probability density
function p∗(d∗) of the heterogeneous sediment is given by

p∗(d∗) =

N∑
n=1

pnδ(d
∗ − d∗

n), (2.1)

where δ is the Dirac function. The values of pn may vary in both space and time, but
the sum of all grain size fractions must equal 1 everywhere:

N∑
n=1

pn = 1. (2.2)
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The sediment is assumed to be characterized by a mean grain size d∗
mean and a standard

deviation σ ∗ given by

d∗
mean =

N∑
n=1

d∗
npn, σ ∗2 =

N∑
n=1

(d∗
n − d∗

mean)
2pn, (2.3)

and the effects of higher moments of the sediment distribution (e.g. skewness, kurtosis)
are neglected.

The aim of the work is to evaluate the time development of small amplitude perturb-
ations superimposed to the flat bottom configuration, in order to determine the con-
ditions leading to the appearance of sand waves. The stability analysis of the flat bed
has already been made considering a uniform sediment (e.g. Hulscher 1996; Gerkema
2000; Besio et al. 2003; Besio et al. 2006). Presently, we consider the behaviour of the
perturbations for a sediment mixture, thereby being interested in the sorting process
induced by the incipient growth of sand waves and in the stabilizing/destabilizing
effects that a graded sediment has on the formation of these bottom forms.

The transport of bed material is associated with small-scale fluctuations in the bed
elevation induced by the moving sediment grains or by the migration of small bed
forms (ripples). As pointed out by Parker (2007), these bed fluctuations are essential to
the understanding of the transport of a sediment mixture. Indeed, for a sediment grain
in the bed to be entrained into motion, it must be exposed to the action of the fluid.
Therefore, the higher the elevation of the grain, the higher is the probability that it is
entrained. The simplest reasonable approximation of the probability of entrainment
per unit time of a grain as a function of elevation in the bed is a step function, such
that the probability of erosion of a grain per unit time has a constant value in an
‘exchange’ or ‘active’ layer of thickness L∗

a near the bed surface, and vanishes below
this layer. This approximation was first introduced by Hirano (1971). The value of L∗

a

is either of the order of magnitude of the size of the sediment when the sea bottom is
flat or of the order of magnitude of the ripple height z∗

r when small-scale bed forms
are generated. In the present case, since sea ripples are supposed to be present, we
assume L∗

a = z∗
r where z∗

r is a constant value.
Let the fractions in the size distribution in the active layer be denoted as pa,n. Note

that pa,n might be functions of time t∗ and horizontal coordinates x∗ and y∗, but
they cannot be functions of the upward normal coordinate z∗ because the ‘active’
layer is assumed to be instantaneously well mixed. The size fractions in the substrate
below the active layer are denoted by ps,n. In general, ps,n can be a function of space,
defining the stratigraphy of the deposit. However, ps,n are independent of t∗ because
they are assumed to be below the level of bed fluctuations. Figure 1 presents a side
view of the water column and the active layer concept.

Following previous studies of sand wave formation carried out considering both a
homogeneous and a heterogeneous sediment (Hulscher 1996; Gerkema 2000; Besio
et al. 2003; Roos et al. 2007a), the suspended load is assumed to provide a negligible
contribution to the total sediment transport rate. Therefore, the analysis is valid for a
relatively coarse sediment and weak tidal currents such that the turbulent eddies are
unable to pick up the sediment from the bottom and carry it into suspension.

Let (Q∗
x,n, Q

∗
y,n) denote the volumetric flux per unit width of grains of size d∗

n in
the x∗ and y∗ directions, respectively. Within the bed, each grain size class n should
satisfy sediment continuity. This conservation law relates local changes in both bed
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h*
0

z* = –h* – L*
a

pa,n (x, y, z)

ps,n (x, y, t)

z* = 0

z* = η*

z* = –h

L*
a

Figure 1. Side view of the water column and the active layer concept. The thickness of the
active layer and the variation of the free surface are exaggerated for the clearness of the
sketch.

level and grain size distribution,

−pi,n

∂(h∗ + L∗
a)

∂t∗ +
∂(L∗

apa,n)

∂t∗ = − 1

(1 − por )

[
∂Q∗

x,n

∂x∗ +
∂Q∗

y,n

∂y∗

]
. (2.4)

In the above relation, z∗ = −h∗ denotes the elevation of the bottom, so that the
elevation of the interface between the active layer and the substrate is given by
z∗ = −h∗ − L∗

a (z∗ =0 is assumed to describe the mean water level). Moreover, pi,n

denote the size fractions of the material exchanged between the active layer and
the substrate as the bed aggrades or degrades (pi,n = pa,n if ∂(h∗ + L∗

a)/∂t∗ < 0 and
pi,n =ps,n if ∂(h∗ +L∗

a)/∂t∗ � 0). The first term on the left-hand side of (2.4) represents
the bottom changes and the second describes changes in the sediment distribution in
the active layer.

By summing all grain size fractions, the individual sediment continuity equations
(2.4) add up to a single equation relating the bed evolution to the divergence of the
total sediment transport rate:

∂h∗

∂t∗ =
1

(1 − por )

[
∂Q∗

x ,tot

∂x∗ +
∂Q∗

y,tot

∂y∗

]
, (2.5)

where

(Q∗
x ,tot , Q

∗
y,tot ) =

N∑
n=1

(Q∗
x,n, Q

∗
y,n). (2.6)

As previously pointed out, the suspended load is assumed to be negligible and only
transport of sediment close to the bed is considered. The bed load is evaluated by
means of the approach proposed by Van Rijn (1991), corrected to account for the
gravity effects which move the sediment towards the troughs of the bottom waviness
(Besio et al. 2006).
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For a specific grain size within a sediment mixture, two further corrections should be
introduced. First, pa,n corrects for the availability of grains of size d∗

n in the mixture.
Second, hiding/exposure effects should be included, represented by the function
H which appears in the definition of the critical value of the Shields parameter
(Egiazaroff 1965). These effects should be taken into account since the transport
of fine grains is hindered as they are protected by the surrounding coarser grains.
Conversely, the transport of coarse grains is enhanced as, in the presence of finer
grains, they are more exposed and thus transported more easily by the flow. Therefore,

(Q∗
x,n, Q

∗
y,n) = pa,n

(
Q(u)∗

x,n , Q(u)∗
y,n

)
, (2.7)

where the bed-load transport rate per unit fraction is given by the sum of two
contributions: (

Q(u)∗
x,n , Q(u)∗

y,n

)
=

(
Q

(u)∗
B,x,n, Q

(u)∗
B,y,n

)
+

(
Q

(u)∗
P,x,n, Q

(u)∗
P,y,n

)
. (2.8)

To evaluate the former, which is the sediment transport rate per unit fraction over a
horizontal bed, we use the approach of Van Rijn (1991):

(
Q

(u)∗
B,x,n, Q

(u)∗
B,y,n

)
=

√
(ρ∗

s /ρ
∗ − 1)g∗(d∗

n)
3
0.25

R0.2
p,n

(
θn − θcrit,n

θcrit,n

)1.5
(θx,n, θy,n)√

θn

. (2.9)

Of course (2.9) can be used to evaluate the sediment transport rate only when θn is
larger than θcrit,n; otherwise the sediment transport rate vanishes. In (2.9), ρ∗ is the
sea water density and Rp,n is the Reynolds number of the sand fraction characterized

by a grain size d∗
n (Rp,n =

√
(ρ∗

s /ρ
∗ − 1)g∗(d∗

n)
3/ν∗, ν∗ being the kinematic viscosity of

the sea water). The sediment transport rate due to the slope of the bed, which is the
second contribution appearing in (2.8), is given by(

Q
(u)∗
P,x,n, Q

(u)∗
P,y,n

)
= −Q

(u)∗
B,nG∇h∗. (2.10)

In (2.10), G is a dimensionless second-order two-dimensional tensor which, following
Kovacs & Parker (1994) and Seminara (1998), can be written in the form

Gss = − 0.07

Q
(u)∗
B,n

dQ
(u)∗
B,n

dθn

, Gsn = Gns = 0, Gnn = −0.55√
θn

, (2.11)

where (s, n) is an intrinsic orthogonal coordinate system, with s aligned with the
bottom stress. Finally, (θx,n, θy,n) are the x∗ and y∗ components of the Shields
parameter due to the tidal current defined by

(θx,n, θy,n) =
(τ ∗

x , τ ∗
y )

(ρ∗
s − ρ∗)g∗d∗

n

, (2.12)

where (τ ∗
x , τ ∗

y ) are the dimensional shear stress components, which can be evaluated
by means of the constitutive law. Note that the components of the Shields parameter
(θx,n, θy,n) and the sediment parameter Rp,n in the formulae for the sediment transport
rate are evaluated for each grain size class, thus accounting for the reduced mobility
of a coarser grain with respect to a finer grain.

As recently pointed out by Colombini (2004), to study the time development of
bottom perturbations, the shear stress exerted by the fluid on the sediments moving
close to the bed should be evaluated at top of the so-called bed-load layer. In other
words, it is the shear stress which is present at some distance from the bed and not
the shear stress at the bed which should be used to estimate the bed-load discharge.
Therefore, as in Colombini (2004) and Cherlet et al. (2007), a new parameter is
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introduced in the analysis, namely the thickness of the bed-load layer h∗
b. Moreover,

as in Cherlet et al. (2007), because of the supposed presence of small-scale ripples of
height z∗

r , it is assumed that

h∗
b = z∗

r

[
1 + 1.3

(
θn − θcrit,mean

θcrit,mean

)0.55
]

. (2.13)

The critical value θcrit,n of the Shields parameter, which appears into (2.9) and
characterizes the grains with size equal to d∗

n , is written as function of the critical
Shields parameter of the mean grain size and of the ratio d∗

n/d
∗
mean (Egiazaroff 1965;

Ashida & Michiue 1972):

θcrit,n = θcrit,meanH

(
d∗

n

d∗
mean

)
, (2.14)

where

H

(
d∗

n

d∗
mean

)
= 0.843

d∗
mean

d∗
n

if
d∗

n

d∗
mean

� 0.4, (2.15)

H

(
d∗

n

d∗
mean

)
=

⎡
⎢⎢⎣ log(19)

log

(
19

d∗
n

d∗
mean

)
⎤
⎥⎥⎦

2

if
d∗

n

d∗
mean

> 0.4. (2.16)

The critical Shields parameter of the mean grain size, used in (2.14), is evaluated by
means of the relationship proposed by Brownlie (1981) which reads

θcrit,mean = 0.22R−0.6
p,mean + 0.06 exp

(
−17.77R−0.6

p,mean

)
. (2.17)

Introducing the following dimensionless variables

(x, y, z) =
(x∗, y∗, z∗)

h∗
0

, t = t∗ω∗, (2.18)

h =
h∗

h∗
0

, La =
L∗

a

h∗
0

, (Qx,n, Qy,n) =
(Q∗

x,n, Q
∗
y,n)√

(ρ∗
s /ρ

∗ − 1)g∗(d∗
mean,0)

3
,

(ω∗ denotes the angular frequency of the forcing tide and d∗
mean,0 is the initial mean

grain size of the mixture which is assumed to be constant in space), the morpho-
dynamic problem is posed by

−pi,n

∂(h + La)

∂t
+

∂(Lapa,n)

∂t
= −β

[
∂Qx,n

∂x
+

∂Qy,n

∂y

]
, (2.19)

and
∂h

∂t
= β

[
∂Qx ,tot

∂x
+

∂Qy,tot

∂y

]
, (2.20)

where the dimensionless parameter β is equal to

β =
1

(1 − por )

dmean,0√
Ψmean

, (2.21)

with

dmean,0 =
d∗

mean,0

h∗
0

, Ψmean =
(ω∗h∗

0)
2

(ρ∗
s /ρ

∗ − 1)g∗d∗
mean,0

. (2.22)
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Since in the present problem L∗
a is assumed to be constant and equal to the ripple

height z∗
r , it follows that ∂L∗

a/∂t = 0 and (2.19) becomes

−pi,n

∂h

∂t
+ La

∂pa,n

∂t
= −β

[
∂Qx,n

∂x
+

∂Qy,n

∂y

]
. (2.23)

At this stage, it is elucidating to analyse the order of magnitude of the different terms
appearing in (2.20) and (2.23). Taking into account that the active layer thickness is
of the order of a few centimetres and the average water depth is of the order of tens
of metres, the term La∂pa,n/∂t is found to be of order 10−4. Furthermore, considering
that the mean grain size is of the order of a few millimetres and considering a tidal flow
dominated by the semidiurnal component, β turns out to be also of the order 10−4.
Consequently, the terms on the right-hand side of (2.20) and (2.23) are of order 10−4.
Then, (2.20) suggests that either the bed evolves on a morphodynamic time coordinate
T = βt , which is much longer than the tidal period, or the bed changes are very small.
Furthermore, since La∂pa,n/∂t is approximately of the same order of magnitude as
the term related to the convergence or divergence of the sediment transport, the
equation obtained by eliminating ∂h/∂t from (2.23) using (2.20) suggests that the bed
composition changes on both the tidal and the morphodynamic time scales.

To proceed further, it is necessary to evaluate the bed shear stress. Therefore, in
the next part, the hydrodynamic problem is specified.

2.2. Hydrodynamic problem

As pointed out in § 1, the morphodynamics is forced by a tidal current which is
assumed to be dominated by one main constituent of angular frequency ω∗. The
maximum value of the depth-averaged fluid velocity during the tidal cycle is denoted
by U ∗

0 . As discussed in Blondeaux & Vittori (2005a, b), the hydrodynamic problem is
posed by continuity and momentum equations where the Coriolis contributions related
to the Earth’s rotation (Ω∗ is the angular velocity of the Earth’s rotation and φ0 is the
local latitude) are taken into account because they affect the velocity profile of the tidal
current over the flat sea bottom. However, as pointed out by Gerkema (2000) and Besio
et al. (2006), when the interaction of a tidal current with a bottom waviness character-
ized by a wavelength of the order of hundreds of metres is considered, the terms related
to inertia and Coriolis effects can be neglected. Therefore, Coriolis terms are retained
when the tidal current over a flat bed is determined but they are neglected when
the flow over the bottom perturbations is evaluated. Furthermore, the flow regime is
assumed to be turbulent and viscous effects are neglected. The Boussinesq hypothesis is
used to model Reynolds stresses and a scalar kinematic eddy viscosity ν∗

T is introduced.
On defining the following dimensionless variables

(u, v, w) = (u∗, v∗, w∗)/U ∗
0 , p = p∗/ρ∗ω∗h∗

0U
∗
0 , (2.24)

(p∗ denotes the pressure and (u∗, v∗, w∗) are the velocity components along the x∗, y∗

and z∗ axes, respectively) the flow equations read

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.25)

∂u

∂t
+ r̂

[
u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂y

]
= −∂p

∂x
+ δ̂2

{
∂

∂x

[
2νT

∂u

∂x

]

+
∂

∂y

[
νT

(
∂u

∂y
+

∂v

∂x

)]
+

∂

∂z

[
νT

(
∂u

∂z
+

∂w

∂x

)]}
−2Ω[cos(φ0)w − sin(φ0)v], (2.26)
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∂v

∂t
+ r̂

[
u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂y

]
= −∂p

∂y
+ δ̂2

{
∂

∂x

[
νT

(
∂u

∂y
+

∂v

∂x

)]

+
∂

∂y

[
2νT

∂v

∂y

]
+

∂

∂z

[
νT

(
∂v

∂z
+

∂w

∂y

)]}
− 2Ω sin(φ0)u, (2.27)

∂w

∂t
+ r̂

[
u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂y

]
= − g∗

U ∗
0 ω∗ − ∂p

∂z
+δ̂2

{
∂

∂x

[
νT

(
∂u

∂z
+

∂w

∂x

)]

+
∂

∂y

[
νT

(
∂v

∂z
+

∂w

∂y

)]
+

∂

∂z

[
2νT

∂w

∂z

]}
+ 2Ω cos(φ0)u, (2.28)

where the kinematic eddy viscosity ν∗
T is written as the product ν∗

T 0νT in which
the constant ν∗

T 0 is dimensional and provides the order of magnitude of the eddy
viscosity while νT = νT (x, y, z, t) is a dimensionless function (of order 1) describing
the spatial and temporal variations of the turbulence structure. In (2.26)–(2.28), two
dimensionless parameters appear which are denoted by r̂ and δ̂, respectively:

r̂ =
U ∗

0

ω∗h∗
0

, δ̂ =

√
ν∗

T 0/ω
∗

h∗
0

. (2.29)

The ratio r̂ between the amplitude of horizontal fluid displacement oscillations and
the local depth is the Keulegan–Carpenter number of the phenomenon. Furthermore,
δ̂ is the ratio between the thickness of the viscous bottom boundary layer and the
local depth. Finally, Ω is the ratio between the angular velocity of the Earth’s rotation
and the angular frequency of the tidal wave.

The hydrodynamic problem needs appropriate boundary conditions. At the free
surface, described by z = η(x, y, t), wind stresses are assumed to be negligible and
the dynamic boundary conditions force the vanishing of the shear stresses and of the
relative pressure. Moreover, the kinematic boundary condition is forced. Finally, the
velocity is forced to vanish at a distance from the sea bed equal to a fraction 1/χ

of the dimensionless roughness zr equal to z∗
r /h∗

0, z∗
r being the size of the bottom

roughness. As the flow induced by the tide propagation can be assumed to be quasi-
steady, the constant χ is chosen equal to 29.8 based on an analysis of data of steady
velocity profiles (Fredsøe & Deigaard 1992).

The problem can be closed once a model for the eddy viscosity ν∗
T is given. The

eddy viscosity ν∗
T is assumed to be time independent and given by

ν∗
T = k

U ∗
0 h∗

0

C F (ξ ). (2.30)

In (2.30), k is the Von Karman constant (k = 0.4) and the eddy viscosity is assumed to
be proportional to the time average of the local friction velocity and to the local depth
h∗

0. Then, the average friction velocity is related to U ∗
0 by introducing the friction factor

C. Since the Reynolds number of the flow is assumed to be large, C depends only on
the dimensionless roughness zr and standard formulae for steady currents can be used
to estimate C. The value of C turns out to range between 20 and 30. Furthermore,
the function F (ξ ) (ξ =(z∗ − η∗)/(h∗ + η∗)) describes the vertical structure of the eddy
viscosity. Following Dean (1974), F (ξ ) has been chosen such that the eddy viscosity
grows linearly with the distance from the bed, when a region close to the bottom
is considered, and then decreases achieving a finite small value at the free surface.

Moreover, ν∗
T 0 is set equal to kU ∗

0 h∗
0

∫ 0

−1
F (ξ ) dξ/C and νT (ξ ) = F (ξ )/

∫ 0

−1
F (ξ ) dξ . It

can be verified that the eddy viscosity ν∗
T 0 is O(10−1) m2 s−1. These definitions of ν∗

T 0
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and νT have been chosen in such a way that the depth-averaged value of νT (ξ ) is
equal to one. Since ν∗

T 0 is proportional to U ∗
0 , it is useful to introduce the new viscous

parameter

�̂ =
k

∫ 0

−1
F (ξ ) dξ

C =
δ̂2

r̂
, (2.31)

which does not depend on the strength of the tidal current. Finally, note that using a
time-independent model for ν∗

T might be considered a severe approximation. However,
as pointed out by Gerkema (2000), it provides a fair description of the phenomenon
since it mainly fails only at flow reversal when tidal currents are very weak and the
transport of any quantity, and in particular of sediment, tends to vanish.

Once the flow is determined by solving (2.25)–(2.28), the evaluation of the bottom
shear stress closes the problem.

3. The time development of arbitrary bottom perturbations of small amplitude
Small perturbations of the flat bottom are considered so that the bottom

configuration differs from the flat one by a small (strictly infinitesimal) amount
proportional to ε (ε � 1). Hence, the bottom profile can be thought to be given by
the superposition of different spatial components which evolve independently from
each other. A normal mode analysis can be performed and the problem can be solved
for the generic spatial component such that the dimensionless water depth is given by

h = 1 − εA(t)ei(αxx+αyy) + c.c. + O(ε2), (3.1)

where εA(t) is the amplitude of the generic component which is periodic in the x and
y directions with dimensionless wavenumbers αx and αy . The small value of ε allows
for the hydrodynamic variables to be expanded in terms of ε

(u, v, w, p, η) =

(
u0, v0,

h∗
0

L∗ w0,
L∗

h∗
0

p0,
a∗

h∗
0

e0

)

+ ε

(
u1, v1, w1, r̂p1,

(
a∗

h∗
0

)2

e1

)
A(t)ei(αxx+αyy) + c.c. + O(ε2), (3.2)

where a∗ =U ∗
0 h∗

0/(ω
∗L∗) and L∗ =

√
g∗h∗

0/ω
∗ are the order of magnitude of the

amplitude and the length of the tidal wave, respectively. Because of the use of
a linear approach, all the perturbations of both the hydrodynamic variables (see
(3.2)) and morphodynamic variables (see (3.3)–(3.5)) are sinusoidal functions of the
x and y coordinates. Therefore, the knowledge of the complex amplitudes allows the
evaluation of the perturbations at any location along the bottom profile.

The hydrodynamic problems which are obtained at O(ε0) and O(ε) by plugging
(3.1) and (3.2) into (2.25)–(2.28) do not differ from those found by Blondeaux &
Vittori (2005a, b) and the interested reader is referred to the above papers for a
detailed description of the solution procedure.

Once the hydrodynamics is known, the perturbations of the bottom shear stresses
and those of the sediment transport rates per unit fraction can be readily evaluated,

(θx,n, θy,n) = (θx,n,0, θy,n,0) + εA(t)(θx,n,1, θy,n,1)e
i(αxx+αyy) + c.c. + O(ε2), (3.3)(

Q(u)
x,n, Q

(u)
y,n

)
=

(
Q

(u)
x,n,0, Q

(u)
y,n,0

)
+ εA(t)

(
Q

(u)
x,n,1, Q

(u)
y,n,1

)
ei(αxx+αyy) + c.c. + O(ε2). (3.4)

Since the algebra, though straightforward, is lengthy and tedious, we omit the details.



Grain sorting effects on the formation of tidal sand waves 321

Because ε � 1, it is possible to expand the volume fractions of the sediment classes
in the form

(pa,n, pi,n, ps,n) = (pa,n,0, pi,n,0, ps,n,0)

+ εA(t)(pa,n,1, pi,n,1, ps,n,1)e
i(αxx+αyy) + c.c. + O(ε2). (3.5)

Because of the small value of L∗
a , the exchange of sediment between the substrate and

the active layer makes the grain size distribution to deviate rapidly from the initial
one and the linear approximation to hold only for very small bottom perturbations.
In other words, the present analysis can describe only the very initial stages of the
sand wave growth.

By substitution of (3.4) and (3.5) into (2.23), the contribution of each grain size
class to the bed evolution at order ε becomes

pi,n,0

dA

dt
+ La

(
dpa,n,1

dt
A + pa,n,1

dA

dt

)
= −β

[
iαx

(
pa,n,0Q

(u)
x,n,1 + pa,n,1Q

(u)
x,n,0

)
+ iαy

(
pa,n,0Q

(u)
y,n,1 + pa,n,1Q

(u)
y,n,0

)]
A. (3.6)

Note that the sediment transport of each grain size class at order ε consists of a
contribution that is related to the flow over a wavy bottom and a contribution that is
induced by the changes in the sea bottom composition. Moreover, since L∗

a = z∗
r and

the ripple height is assumed to be constant, the dimensionless thickness La of the
active layer is constant.

To determine the solution, it is necessary to specify the initial conditions, i.e. the
initial stratigraphy of the sea bottom. Let us consider an initial uniform distribution
of the sediment classes such that

pi,n,0 = pa,n,0 = ps,n,0 = pn,0, (3.7)

the value of pn,0 being constant both in space and time. The problem can be further
simplified taking into account that the dimensionless quantity La = L∗

a/h∗
0 and the

parameter β are of the same order of magnitude and both are much smaller than
one. Hence, (3.6) reduces to

La

dpn,1

dt
A +

dA

dt
pn,0

= −β
[
iαx

(
pn,0Q

(u)
x,n,1 + pn,1Q

(u)
x,n,0

)
+ iαy

(
pn,0Q

(u)
y,n,1 + pn,1Q

(u)
y,n,0

)]
A (3.8)

where pa,n,1 is written as pn,1 to simplify the notation. Indeed, Lapn,1 can be neglected
with respect to pn,0 since pn,1 are assumed to be of the same order as pn,0. In Appen-
dix A the effects of the neglected term on the time development of pn,1 are determined
and it is shown that the results described in the following are practically coincident
with those obtained taking into account the term Lapn,1, as long as the phenomenon
is analysed for a number of tidal cycles of order 103. Moreover, in Appendix A it is
shown that the effects of the term Lapn,1 become significant only when pn,1 becomes
large. This happens only when the number of tidal cycles is larger than O(103), such
that a linear analysis cannot be used anymore to describe the time development of
the bottom perturbation since its amplitude has attained significant values.



322 T. Van Oyen and P. Blondeaux

Integrating (3.8) over all the grain sizes and taking into account the constraints∑N

n=1 pn,0 = 1,
∑N

n=1 pn,1 = 0, it follows

dA

dt
= −β

N∑
n=1

[
iαx

(
pn,0Q

(u)
x,n,1 + pn,1Q

(u)
x,n,0

)
+ iαy

(
pn,0Q

(u)
y,n,1 + pn,1Q

(u)
y,n,0

)]
A. (3.9)

By using (3.9), equation (3.8) becomes

La

dpn,1

dt
−pn,0β

N∑
m=1

[
iαx

(
pm,0Q

(u)
x,m,1+pm,1Q

(u)
x,m,0

)
+iαy

(
pm,0Q

(u)
y,m,1+pm,1Q

(u)
y,m,0

)]
= −β

[
iαx

(
pn,0Q

(u)
x,n,1 + pn,1Q

(u)
x,n,0

)
+ iαy

(
pn,0Q

(u)
y,n,1 + pn,1Q

(u)
y,n,0

)]
, (3.10)

from which pn,1 can be determined. The reader should notice that, since the critical
value of the Shields parameter depends on the mean grain size (see (2.14)), the
functions Q

(u)
x,n,1 and Q

(u)
y,n,1 depend on pn,1. This dependence should be made explicit

using (2.3) in order to solve (3.9), (3.10) and to determine pn,1. In other words, it is
necessary to write

(
Q

(u)
x,n,1, Q

(u)
y,n,1

)
=

(
Q̂

(u)
x,n,1, Q̂

(u)
y,n,1

)
+

(
ˆ̂
Q

(u)

x,n,1,
ˆ̂
Q

(u)

y,n,1

) N∑
m=1

d∗
m

d∗
mean,0

pm,1. (3.11)

Once pn,1 are evaluated, (3.9) provides the time development of the amplitude of the
bottom perturbation.

In the following, to keep the solution procedure and the analysis of the
results as simple as possible, we fix N =2 and consequently, d∗

1 = d∗
mean,0(1 − σ ),

d∗
2 = d∗

mean,0(1 + σ ). It follows that the perturbation of the grain size distribution
is known when the value of p1,1 = −p2,1 is determined.

By using (3.11), we obtain

dp1,1

dt
+ p1,1

β

La

[−p1,0F(t) + H(t)] = p1,0

β

La

[G(t) − I(t)] , (3.12)

where F(t), G(t), H(t) and I(t) are periodic functions with frequency ω∗ whose
expressions are given in Appendix B. The solution of (3.12) can be found by writing

p1,1(t) = e−
∫ t

0
β

La
[−p1,0F(t ′)+H(t ′)]dt ′ K(t), (3.13)

it follows:
dK
dt

=
β

La

p1,0[G(t) − I(t)]

e−
∫ t

0
β

La
[−p1,0F(t ′)+H(t ′)] dt ′ . (3.14)

Since the right-hand side of (3.14) turns out to be a periodic function of time, we
expand it as a Fourier series of time. Then the solution can be written in the form

K =

∞∑
n=−∞,n�=0

Kne
int + K0t + C1, (3.15)

where the values of Kn can be obtained once the harmonic components of the
right-hand side of (3.14) are evaluated. Hence, the function p1,1 turns out to be

p1,1(t) = e−
∫ t

0
β

La
[−p1,0F(t ′)+H(t ′)]dt ′

( ∞∑
n=−∞,n�=0

Kne
int + K0t + C1

)
, (3.16)
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where the constant C1 depends on the initial conditions, i.e. on the initial value p1,1(0)
of p1,1(t)

C1 = p1,1(0) −
∞∑

n=−∞,n�=0

Kn. (3.17)

Then, the temporal growth of the amplitude of the bottom forms can be determined
by means of (3.9) which gives rise to the following amplitude equation

1

A

dA

dt
= −β

{
D(t)F(t)

( ∞∑
n=−∞,n�=0

Kne
int + K0t + C1

)
+ G(t)

}
, (3.18)

where the function D(t), defined by

D(t) = e−
∫ t

0
β

La
[−p1,0F(t ′)+H(t ′)]dt ′

=

∞∑
n=−∞

Dne
int , (3.19)

turns out to be a periodic function of time. If we note that the function,

Γ (t) = −D(t)F(t)

( ∞∑
n=−∞,n�=0

Kne
int

)
− G(t), (3.20)

is also a periodic function of time with a non-vanishing time average value Γ

(Γ (t) = Γ + Γ̃ (t)) and we write

L(t) = −D(t)F(t) =

∞∑
n=−∞,n�=0

Lne
int + L0, (3.21)

it follows that

A(t) = A0 exp

(
β

[∫ t

0

Γ̃ dt +

∞∑
n=−∞,n�=0

Ln

n

(
K0

n
− iC1

)
eint

])

exp

(
β

[ ∞∑
n=−∞,n�=0

Ln

in
teint

])
exp(β[Γ t + C1L0t]). (3.22)

In (3.22) use has been made of the vanishing of the product K0L0. The first
exponential term on the right-hand side of (3.22) describes the periodic oscillations
of the bottom forms which take place during the tidal cycle and are characterized
by a constant amplitude. The second exponential term describes oscillations which
grow in time. In both cases the oscillations are small because they are proportional to
the small quantity β . The last exponential term on the right-hand side describes the
growth/decay of the bottom forms which takes place because of the inherent instability
of the morphodynamic system. As indicated in the previous section, the growth takes
place on the slow morphodynamic time scale T = βt and it is controlled by the value
of Γ and by the product C1L0. The growth described by the term exp(C1L0T )
depends on the initial perturbation of the grain size distribution and the value of
C1L0 can be made positive or negative or equal to zero with an appropriate choice
of p1,1(0). Physically, it means that the growth/decay of the bottom perturbation,
which is controlled by the value of Γ , can be accelerated or decelerated depending
on the initial grain size perturbation. In other words, the process which leads to the
formation of sand waves, when the sea bed is made of a sediment mixture, can be
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accelerated or decelerated if a perturbation of the grain size distribution is added
to the bottom perturbation. However, since the value of L0 turns out to be much
smaller than Γ , the initial grain size distribution has small effects on the growth of
the bottom perturbation unless p1,1(0) has quite large unrealistic values. Moreover,
since both the amplitude and the phase of the initial perturbation of the grain size
distribution are arbitrary, in the following the stability/instability of the sea bed
configuration is chosen to be discussed by considering the value of Γ only and the
effects of p1,1(0) on the phenomenon are not taken into account.

The aim of the analysis is twofold. On one hand, we want to evaluate the effects that
a grain size mixture has on the process which leads to the formation of sand waves.
On the other hand, we want to investigate the sorting process induced by the bed
form growth. The grain size distribution can be analysed looking at the value of p1,1

p1,1(t) = D(t)

( ∞∑
n=−∞,n�=0

Kne
int + K0t + C1

)
. (3.23)

Taking into account (3.19), we can write

p1,1(t) =

∞∑
n=−∞,n�=0

Dne
int

∞∑
n=−∞,n�=0

Kne
int + D0

∞∑
n=−∞,n�=0

Kne
int

+ K0t

∞∑
n=−∞,n�=0

Dne
int + K0D0t + C1

∞∑
n=−∞,n�=0

Dne
int + C1D0, (3.24)

where different contributions can be recognized. The last two terms are due to the
initial value of the grain size perturbation which causes both oscillations and a mean
value different from zero. The second and third term represent oscillations of the
grain size distribution induced by the periodic nature of the tidal flow. Therefore, the
grain size distribution averaged over the tidal cycle, is controlled by the time-averaged
value of the first term of the right-hand side of (3.24) and by the value of the product
K0D0. Of course, for large times the latter term prevails on the former such that the
resulting mean grain size distribution on the morphodynamic time scale is controlled
by the value of K0D0. The values of p1,1(t) obtained by means of (3.24) and by
the numerical integration of (A 1) are compared with K0D0t in Appendix A. The
obtained results (see figure 17) show that the value of K0D0t fully describes the net
growth/decay of p1,1 even though only the full solution can describe the oscillations
of the grain size distribution taking place during the tide cycle. Moreover, it appears
that the effect of the initial value of p1,1 becomes negligible as the time grows. If
no initial perturbation is given to p1,1, the results of Appendix A (see figure 18)
show that the value of K0D0t can describe the grain size distribution for a large
number of cycles until the growth of the amplitude of the bottom forms makes the
linear approach unsuitable to describe the phenomenon. Hence, in the discussion of
the results, only the value of K0D0 as function of the parameters of the problem is
analysed in detail. Appendix A clarifies this points more thoroughly.

4. Discussion of the results
4.1. Description of the results

Because of the large number of the parameters controlling the phenomenon, an
exhaustive description of the results in the parameter space is not possible. Hence,
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in the following, we simply compare the results of the present analysis with those
obtained for a uniform sediment with a diameter equal to the mean diameter of the
mixture, considering tide and sediment characteristics which are typical of shallow
tidal seas. The comparison allows us to understand the qualitative and quantitative
effects that a mixture has on the process which leads to the formation of sand waves.
The reader interested into the effects that the other parameters of the problem have
on the phenomenon is referred to Besio et al. (2006).

The results presented in the following show that the effects of a sediment mixture
on the formation of sand waves are somewhat weak and perhaps smaller than those
that other phenomena presently neglected (e.g. the spring-neap tide cycle) might have.
Rather than evaluating the quantitative results provided by the analysis, the reader
should consider the qualitative findings, e.g. the stabilizing/destabilazing effect that a
mixture has on the flat bottom configuration or the trend of the coarse fraction of
the sediment mixture to be piled up at the crests/troughs of the bottom forms.

We consider parameter values typical for the North Sea (van der Veen 2008).
The average water depth is 30 m and the dominant tide constituent is assumed to
be the M2 component with a maximum value of the depth-averaged velocity equal
to 0.70 m s−1. Moreover, e is 0.2 and the tidal velocity vector is counter-clockwise
rotating. Finally, the sediment has a value of d∗

mean,0 equal to 0.4 mm and the bottom
roughness is assumed to be due to sea ripples which are 0.22 m long and 2.2 cm high
(Soulsby & Whitehouse 2005). For these values of the parameters, the ratio between
the shear velocity and the fall velocity turns out to be smaller than one. Therefore,
the assumption of a negligible contribution of the suspended load to the sediment
transport appears feasible. The dimensionless parameters of the model turn out to be
r̂ = 166, �̂= 2.61 10−3, e = 0.2, zr = 0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3

and Rp,mean = 23.7. Since the field data considered by Roos et al. (2007a) show that
values of σ = σ ∗/d∗

mean,0 fall between 0.1 for well-sorted mixtures to 0.3 for poorly
sorted mixtures, the theoretical results have been obtained for values of σ ranging
between 0 (homogeneous sediment) and 0.5 (poorly sorted sand mixtures).

Since Besio et al. (2006) showed that the most amplified modes are those
characterized by crests orthogonal to the main axis of the tidal ellipse, we focus our
attention on this case. Therefore, we introduce the axes (x̂, ŷ) such that x̂ is aligned
with the main axis of the tidal ellipse and we consider perturbations characterized by
αŷ equal to zero. Moreover, because of the symmetry of the forcing flow, no migration
of the bottom forms is expected to be present and indeed the results show that the
imaginary part Γ I of Γ vanishes.

Figure 2 shows the amplification rate Γ R of the bottom perturbation versus its
wavenumber αx̂ for both a perfectly sorted sediment and a mixture characterized
by a dimensionless standard deviation σ equal to 0.3. In this case, the theoretical
predictions show that the flat bottom configuration is more stable when the sea bed
is made up of a poorly sorted sediment than when the sediment is well sorted. In
fact, the dimensional response time T ∗

Γ turns out to be about 9200 days for a uniform
sediment and 9600 days for a graded sediment. Moreover, the results show that the
bed forms which appear when the sea bed is made up of a mixture are longer than
those which characterize a uniform sea bed. More specifically, the wavelengths for
which the maximum amplification rate is attained are about 500 m and 540 m for the
uniform sediment and the sediment mixture, respectively. The tendency of a mixture
to stabilize the flat bed and to give rise to longer bed forms with respect to those
appearing for a well-sorted sediment is similar to the tendency found by Foti &
Blondeaux (1995a, b), who investigated ripple formation under sea waves.
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Figure 2. Amplification rate Γ R of the bottom perturbation as function of αx̂ for r̂ =

166, �̂ = 2.61 10−3, e = 0.2, zr = 0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean =
23.7. The broken line corresponds to a uniform sediment and the continuous line is related to
a graded sediment characterized by σ = 0.3.

To consider the spatial variation of the bed composition, we point out that the
mean grain size can be written in the form

d∗
mean = d∗

mean,0 + ε
[
d∗

mean,1A(t)ei(αxx+αyy) + c.c.
]
+ O(ε2). (4.1)

The real part of d∗
mean,1 describes variations of the mean grain size which are in or

out of phase with respect to the elevation of the bottom profile while the imaginary
part corresponds to a shift of the grain size distribution with respect to the bottom
forms. For a bimodal sediment mixture (N = 2), (4.1) can be written as

d∗
mean

d∗
mean,0

= 1 + ε
[
A(t)p1,1(d1 − d2)e

i(αxx+αyy) + c.c.
]
+ O(ε2). (4.2)

Since d1 is chosen to be smaller than d2, a positive value of the real part of p1,1

implies an accumulation of the fine fraction at the crests of the bottom forms, while
a negative value indicates a coarsening of the sediment at the crests. The imaginary
part of p1,1 quantifies the possible shift of the grain size distribution with respect to
the bottom waviness. Since, for large times, the value of p1,1 is dominated by the
term K0D0, which turns out to be real and negative, the results of figure 3 indicate
that the coarse fraction tends to be piled up at the crests of the bottom forms.

Figure 4 shows the effect, on the phenomenon, of the sortedness of the sediment
mixture. In figure 4, Γ R is plotted versus αx̂ both for a uniform well-sorted sediment
and different bimodal mixtures characterized by the same mean diameter but different
values of the dimensionless standard deviation σ . Of course when σ tends to vanish,
the results of the uniform case are recovered. At first, when σ increases from zero
up to about σ =0.3, the growth rate of the bottom perturbations decreases. Then
a further increase of σ leads to an increase of Γ R and for σ equal to 0.4 and
0.5 the values of Γ R become larger than those characterizing the uniform sediment
and a sediment mixture destabilizes the flat bed configuration. Also the wavelength
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Figure 3. Values of K0D0 as function of αx̂ for r̂ = 166, �̂ =2.61 10−3, e = 0.2, zr =
0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean = 23.7. The graded sediment
is characterized by σ = σ ∗/d∗

mean,0 = 0.3.
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Figure 4. Amplification rate Γ R of the bottom perturbation as function of αx̂ for r̂ =

166, �̂ = 2.61 10−3, e =0.2, zr = 0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean =
23.7. The continuous line corresponds to a uniform sediment and the broken lines are related
to a graded sediment characterized by different values of σ .

of the most unstable modes appears to depend on σ . For moderate values of σ

the wavelength of the predicted bottom forms tends to be longer than that of a
uniform sediment. However, as σ is increased, the wavelength first decreases and
then increases and eventually becomes larger than the wavelength characterizing the
well-sorted sediment.
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Figure 6. Amplification rate Γ R of the bottom perturbation as function of αx̂ for (a) r̂ =119,

142, 166 and (b) r̂ = 190, 213, 237. The other parameter values are �̂= 2.61 10−3, e = 0.2,
zr = 0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean = 23.7. The broken lines
correspond to a uniform sediment and the continuous lines are related to a graded sediment
characterized by σ = 0.3.

The influence of σ on the sorting process is illustrated in figure 5, where K0D0

is plotted versus αx̂ for the same values of the parameters as those of figure 4.
The results show that the sediment becomes coarser at the crest for well-sorted and
moderately sorted sediment mixtures. However, for poorly sorted mixtures, the value
of K0D0 becomes positive for the most preferred wavelength and a fining of the
sediment takes place at the crests of the bottom forms.

Figure 6 shows the growth rate Γ R of the bottom perturbations for different values
of r̂ , considering a uniform sediment and a moderately sorted sediment (σ =0.3). For
moderate values of r̂ , i.e. for relatively weak tidal currents just larger than the critical
value for which the sediment moves and sand waves appear, the growth rate which
characterizes the graded sediment is always smaller than that obtained for a uniform
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sediment, thus showing that a graded sediment characterized by σ = 0.3 stabilizes the
flat bed configuration. On the other hand, if strong tidal currents are considered, it
is found that the presence of a mixture destabilizes the flat bed configuration (see
figure 6b). The value of r̂ at which the transition between stabilizing/destabilizing
effects takes place, depends on the parameters of the problem and in particular on
the value of σ . More specifically, for the values considered in figure 6 the threshold
value of r̂ is about 180 but, in the investigated range of the parameters, when σ is
increased the threshold value of r̂ decreases.

Figure 7 quantifies the sorting process which takes place when the bottom forms
start to appear, considering bimodal mixtures characterized by a value of σ equal to
0.1 and different values of r̂ . It is found that for moderate values of the Keulegan–
Carpenter number the value of K0D0 is positive indicating a fining of the crest.
However, increasing the strength of the tide, the value of K0D0 becomes negative
for the fastest growing wavenumber such that an accumulation of the coarse grains
on the crests of the bed forms occurs. In figure 8, the same results as in figure 7 are
reported but considering a less well sorted bimodal mixture (σ = 0.3). For moderate
and intermediate values of the Keulegan–Carpenter number (r̂ = 119, 142, 166) the
sorting process is similar to the results previously described, i.e. for moderate values
of r̂ a fining of the crest occurs and an increase of r̂ leads to a coarsening at the
crest. However, figure 8 reveals that poorly sorted sediment mixtures introduce a
dependence of the value of K0D0 on αx̂ when strong tidal currents are considered,
such that both a coarsening as well as a fining of the crest can take place depending
on the value of r̂ .

The results plotted in figures 6–8 have been obtained for fixed values of σ . The
results of additional experiments, in which the influence of σ on the growth rate and
the sorting process were investigated, are summarized in figures 9–12. Figures 9 and
10 show Γ R versus αx̂ for the same values of the parameters as those of figure 4 but
for a smaller (r̂ = 119) and a larger (r̂ = 213) value of r̂ . In both cases, only a poorly
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sorted sediment shows large differences with respect to the uniform case. For the
weakest tidal current, the mixture tends to stabilize the flat bed configuration and the
wavelength of the most preferred mode is longer. On the other hand, for the strongest
tidal current, a sediment mixture characterized by significant values of σ tends to
destabilize the flat bed and both larger and smaller wavelengths with respect to a
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Figure 11. Values of K0D0 as function of αx̂ for r̂ =119, �̂ = 2.61 10−3, e = 0.2,
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uniform sediment are predicted (see figure 10). The results plotted in figure 11 show
that, for r̂ = 119, the fine fraction tends to pile up at the crests of the growing bottom
perturbations independently of the value of σ . However, for r̂ = 213, as also observed
in figures 5 and 8, for well-sorted sediment mixtures the grain size distribution is
found coarser at the crest and for more poorly sorted mixtures the value of K0D0
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oscillates between negative and positive values increasing αx̂ such that the sorting
process is very sensitive to the value of σ (see figure 12).

4.2. Physical interpretation and discussion

To explain the predicted grain size distribution along the bed forms, it is necessary to
consider different contributions. Indeed, the value of dmean,1 depends on the value of
p1,1 which in turn depends on the sediment transport rate. Since the motion of the
sediment, both at the leading order of approximation and at order ε, is induced by
the complex interaction among fluid drag, gravitational force and sheltering effects, the
understanding of the mechanism controlling the grain sorting is not straightforward.
However, the obtained results can be understood taking into account a combination of
two mechanisms. The first is related to the balance of the hiding/exposure effect and
its effect on the mobility, and the second to differences in the number of recirculating
cells felt by the distinct grain size classes.

For well-sorted sediment mixtures, the first mechanism gives rise to a shift from a
fining to a coarsening of the bottom material at the crests of the bottom forms when
the value of r̂ is increased. Indeed, considering well-sorted mixtures and elaborating
on the different contributions to K0D0 yields that the sign of K0D0 is qualitatively
controlled by the sign of the real part of C(t) = (β/La) [G(t) − I(t)] averaged over
the tidal cycle. Since the procedure that leads to the latter statement is lengthy, but
straightforward, we omit the details. Taking into account that p1,0 + p2,0 is equal to
one, C can be written as

C = p1,0αx̂

β

La

(
Q̂

(u)
x̂,1,1 − Q̂

(u)
x̂,2,1

)
, (4.3)

the imaginary part of which vanishes. The changes in the grain size distribution are
related to the difference between the correction of net sediment transport rates of the
fine and coarse fractions induced by the wavy bottom. As pointed out by Besio et al.
(2006), the interaction of the oscillatory tidal current with the wavy bed generates a
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Figure 13. Values of C as function of αx̂ for r̂ = 119, 166 and 213, �̂ = 2.61 10−3, e = 0.2,
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complex flow field which exhibits also steady velocity components in the form of two
recirculating cells for each bottom form. The generation of a steady streaming due
to the interaction of a spatially varying oscillatory flow with a rigid wall was first
discovered in acoustics and theoretically analysed by Rayleigh (1884). Extension to sea
waves was made by Longuet-Higgins (1953). A steady component is also generated
by a uniform oscillatory flow interacting with a complex geometry (Stuart 1966;
Lyne 1971). The interested reader can find a discussion of the physical mechanism
originating a steady velocity component in the above mentioned papers. Taking into
account (3.11), the reader should notice that Q̂

(u)
x̂,n,1 represents the contribution to the

sediment transport rate of order ε, which is induced by these steady recirculating
cells. Figure 13(a) shows C as a function of αx̂ for a moderate, intermediate and large
value of the Keulegan–Carpenter number considering a well-sorted mixture (σ = 0.1).
For weak tidal currents C is positive whereas, for strong tidal currents, C is negative.
Hence, for moderate values of r̂ , the time average over a tidal cycle of Q̂

(u)
x̂,1,1 is larger

than that of Q̂
(u)
x̂,2,1 and a fining of the sediment at the crest occurs. For strong tidal

currents the contribution to the sediment transport of order ε related to the flow
over a wavy bottom for the finer fraction is smaller than that of the coarser fraction,
yielding a coarsening of the sediment at the crest. Physically, it means that, for weak
tidal currents, the exposure effects cannot compensate for the reduced mobility of the
coarse fraction of the sediment mixture. Therefore, the fine fraction is more easily
transported towards the crests of the bottom perturbation by the steady recirculating
cells generated by the interaction of the tidal current with the bottom waviness. For
moderate and strong tidal currents, hiding effects increase and become dominant,
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slowing down the transport of the fine fraction of the mixture. Hence, the steady
velocity component associated to the recirculating cells has a larger effect on the
coarse grains which are thus piled up at the crests of the bottom perturbation.

To understand the oscillations in the value of K0D0 which occur for poorly
sorted mixtures and strong tidal currents, it is necessary to take into account a
second mechanism. Indeed, as shown in figures 13(b) and 13(c), the mechanism just
described is still present also for large values of r̂ and poorly sorted mixtures (σ = 0.3
and σ = 0.5). However, on top of this mechanism, a second mechanism takes place
which induces the oscillations in the value of K0D0. First, it is necessary to note that
the velocity of the sediment particles is proportional to the shear velocity through
a coefficient which depends on the grain size and decreases when the grain size is
increased (Fredsøe & Deigaard 1992). Then, since the shear velocity is proportional
to the depth-averaged velocity, the ratio ss between the amplitude of the sediment
displacement oscillations and the wavelength of the bottom forms, turns out to
be proportional to the ratio sf between the amplitude of the fluid displacement
oscillations and the wavelength of the bottom forms. Finally, since sf is proportional
to αx̂ r̂ , it appears that ss is also proportional to αx̂ r̂ . Hence, the value of ss increases
as αx̂ r̂ is increased and, for large values of r̂ , the dynamics of the sediments is affected
by a large number of steady recirculating cells which increases as αx̂ is increased.
Since ss depends also on the grain size, the fine and coarse fractions of a sediment
mixture feel the effects of a different number of steady recirculating cells and the net
motion of the fine/coarse fraction can be towards the crests or the troughs depending
on the values assumed by r̂ , αx̂ and σ . For this reason the value of K0D0 alternates
between negative and positive values as αx̂ is increased and the frequency of the
oscillations increases as r̂ or σ are increased.

To analyse the behaviour of Γ R , we remind that Γ (t) consists of two contributions
described by (3.20). The second term on the right-hand side of (3.20), G(t), is the sum
of the sediment transport rates of the fine and coarse grain size fractions induced
by the bottom waviness while the first term on the right-hand side describes the
influence on the amplification rate of the changes in the bottom composition. The
reader can better understand the previous statement noting that G(t) is function
of Q̂

(u)
x̂,n,1 only and that the first term on the right-hand side of (3.20) is related to

p1,1(t) (see equations (3.18)–(3.20)). In figures 14 and 15 the growth rate Γ R and
the contribution due to −GR are plotted as a function of αx̂ considering a uniform
sediment and sediment mixtures characterized by σ =0.3 and 0.5 for weak and strong
tidal currents, respectively. It is found that for weak tidal currents Γ R is smaller
than −GR while Γ R becomes larger than −GR for strong tidal currents. Moreover,
the contribution of −GR , i.e. the contribution related to the sediment transport
induced by the bottom waviness, to the amplification rate is always stabilizing with
respect to the uniform case. Additionally, figures 14 and 15 yield that −GR does
not influence the wavelength of the fastest growing wavenumber. It follows that the
sorting process induced by the incipient growth of the bottom forms reduces Γ R for
weak tidal currents and enhances the amplification rate when strong tidal currents are
considered. Furthermore, it can be concluded that the differences in the most preferred
wavelength are induced by the influence of the sorting process on the growth of the
bottom forms.

As already pointed out, the number of model parameters is so large that an
exhaustive investigation of the results in the parameter space cannot be made. Further
runs have shown that different values of the tide and sea characteristics (h∗

0, φ0, e)
as well as different values of the mean characteristics of the sediment (d∗

mean,0) do
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not imply qualitative changes on the sorting process previously described and results
similar to those described so far have been obtained also for the amplification rate.
However, it is found that when the mean grain size is decreased, the influence of the
sorting process on the growth rate decreases such that, when a small mean grain size
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is considered, only stabilizing effects of the mixture are observed and the wavelength
remains practically unchanged.

At last, it is noted that to ascertain the sensitivity of the result to the sediment
transport predictor, predictions of sand wave appearance have been made using other
sediment transport rate formulae. Since the time required by the bed load to adapt
to new flow conditions is much smaller than the tide period, any sediment transport
rate formula, which provides reliable predictions of the sediment flux for steady flows,
can be used. Presently, we have also employed the formula of Meyer-Peter & Muller
(1948), corrected for slope effects (see also Fredsøe & Deigaard 1992). For the sake of
space, these results are not reported herein. However, the obtained results qualitatively
confirm the major findings previously described even though, unavoidably, quan-
titative differences (smaller than or in the order of 100 %) are present.

5. Comparison of theoretical predictions with field data
In the following we describe the outputs of a comparison between present results

and field observations. Unfortunately, a detailed quantitative comparison cannot be
made because of the paucity of field observations. The only data which are available
to the authors are those described by Roos et al. (2007a), Van Lancker & Jacobs
(2000) and Terwindt (1971). Roos et al. (2007a) describe the observations carried out
at five sites in the continental shelf of the Netherlands, where sand waves are present
(see figure 16). The grain size characteristics were measured at the crests of sand
waves, at their troughs and in most cases also along the slopes of the bottom forms.
At the site, named site 3 by Roos et al. (2007a), only two measurements were made
(one at the crest and one at the trough of a bottom form) and the mean grain size at
the crest is practically coincident with that at the trough. On the contrary, at the other
sites (namely site 1, site 2, site 4 and site 5), a large number of sediment samples were
taken and the mean grain size is the result of an average over a significant number of
data. Moreover, the mean grain size at the crests differs appreciably from that at the
troughs. It turns out that the grain size at the crests of the sand waves is larger than
at the troughs at sites 1, 2, 4 while the opposite is observed at site 5. Van Lanker &
Jacobs (2000) analysed the grain size distribution along the sand waves observed in
the Western Belgian continental shelf and in particular near the Baland Bank situated
offshore of Westende (see location 6 in figure 16). They found that the grain size is
coarser at the crests than in the troughs. In Terwindt (1971), the observations at four
locations North of the Hinder Banks in the Southern bight of the North Sea are
described (see figure 16). The first location (location 7) is approximately at 50 km
offshore the Dutch coast in front of the Eastern Scheldt. The second and third
locations (locations 8 and 9) are very close to each other and are situated about
25 km offshore Hoek van Holland. The fourth location (location 10) is about 40 km
offshore of Zandvoort. At all the sites, sand waves are present and a normal sieve
analysis of grain size samples taken along these large-scale bottom forms reveals a
grain size sorting pattern. At the first location, the field data show a fining of the
grain size towards the crests of the sand waves. At the second and third locations the
trend is reversed and the grain size increases when moving from the troughs towards
the crests of the sand waves. At the fourth location no clear trend was recognized in
the grain size distribution.

An analysis of the field data concerning the tidal current, the water depth and the
sediment characteristics does not seem to justify the differences between the grain size
distribution at sites 1, 2, 4, 6, 8, 9 and that at sites 5, 7. Indeed the data on the tidal
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Figure 16. Sketch of the locations in the North Sea where field measurements of the grain
size composition of the bottom material were carried out. At the locations indicated by a
darkened circle, the coarse grains are observed at the crests of the sand waves. At the locations
indicated by a box (locations 5 and 7), a fining of the sediment at the crests of the sand waves
is observed. No clear trend is observed at locations 3 and 10 (indicated by a diamond).

velocity (van der Veen 2008) as well as those on the water depth (Boon & Gerritsen
1997; Ten Brummelhuis, Gerritsen & Van der Kaay 1997) and the median grain size
(Rijks Geologische Dienst 1984; Hydrographer of the Navy 1992) do not show any
clear correlation between the local conditions and the local grain size distribution.

A comparison of the theoretical results with field data is not rigorously justified,
since the former are obtained by means of a linear analysis and the latter are affected,
to some extent, by nonlinear effects. Notwithstanding this fact, the theoretical analysis
seems to provide a possible explanation of the apparently conflicting field observations.
Indeed, the findings of the theoretical model show that a coarsening of the sediment
at the crests is as possible as a fining, depending on relatively small changes of the
tidal current and of the sediment properties.

A more quantitative comparison between the theoretical predictions and the field
data would be necessary to fully support the predictive capabilities of the present
analysis and to verify that nonlinear effects play a minor role in the morphodynamic
development of the bottom forms and on the grain size distribution. Since, to achieve
this goal, detailed information on the oscillating forcing flow and on the bottom
material is needed, laboratory experiments or very accurate field measurements should
be specifically designed.
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6. Conclusions
In this paper, a model is developed to study the initial formation of sand waves

in shallow tidal seas characterized by a bottom that consists of a sediment mixture.
The main goal of the work was the investigation of the sorting process induced by
the incipient growth of sand waves and the evaluation of the effects that a graded
sediment has on the formation of the bottom forms. To this aim we have compared
the present results with those of Besio et al. (2006), who considered the uniform
sediment case.

The analysis shows that both the formation of the bottom forms and the corres-
ponding sorting process are sensitive to the value of the standard deviation σ of
the bottom material and to the strength of the tidal current. More specifically, it is
found that for moderate values of r̂ , i.e. for weak tidal currents, the graded sediment
tends to stabilize the flat bottom configuration and to give rise to longer wavelengths.
Moreover, the fine fraction of the mixture piles up at the crests of the bottom forms
while the coarse fraction moves towards the troughs. On the other hand, for large
values of r̂ , a graded sediment destabilizes the flat bottom configuration with respect
to the uniform sediment case and both longer and shorter wavelengths can be found
depending on σ . Moreover, for large values of r̂ , the sediment at the crest becomes
coarser than that at the trough for well-sorted mixtures. Considering increasing values
of σ , both a coarsening and a fining at the crest can occur depending on the value of
σ . Note that, for large values of r̂ , it would be necessary to include the evaluation
of the suspended load to have a more accurate description of the phenomenon
(Blondeaux & Vittori 2009). The change from a fining to a coarsening of the crests,
which is found for well-sorted mixtures when r̂ is increased, is related to a changing
balance between hiding/exposure effects and reduced mobility effects. For moderate
values of r̂ , the reduced mobility of the larger grains dominates on hiding/exposure
effects and an accumulation of the finer grains at the crests takes place. For strong
tidal currents, the hiding/exposure effects prevail and the larger grains are found to
move towards the crests of the bottom forms. The dependence of the sorting process
on the value of σ for strong tidal currents is found to be related to the different
number of wave crests that the coarse and fine fractions cross during a tide cycle. This
implies that the coarse and fine fractions feel the effects of a different number of steady
recirculating cells and this difference changes as the tidal strength or σ are changed.

The present findings provide a possible explanation of the apparently conflicting
field observations described in Roos et al. (2007a), Van Lancker & Jacobs (2000) and
Terwindt (1971). The presence, at some locations, of the coarse fraction at the crests
of the sand waves while the opposite occurs at other locations could be related to
minor differences in the local tidal current and bottom material. However, in the field
also nonlinear effects e.g. vertical sorting and the shape of the sand wave, play a role
in the resulting sediment distribution. Therefore, the comparison of the model results
with the field observations cannot be considered conclusive.
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Figure 17. The values of the real part of p1,1(t) and K0D0t for the fastest growing wavenum-
ber (αx̂ =0.375) plotted versus time during 10 tidal cycles for r̂ = 190, �̂ = 2.61 10−3, e = 0.2,
zr = 0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean =23.7. The graded sediment
is characterized by σ = 0.1. The continuous lines correspond to the numerical solution of (A 1)
and the broken lines are the analytical solution (3.16). Different initial values of p1,1(t) are
considered. From the bottom to the top: p1,1(0) = (−0.005, 0), (0, 0) and (0.005,0).

Appendix A
The results described in § 4 have been obtained neglecting the term Lapn,1 in (3.8).

Without this simplification, equation (3.12), which describes the time development of
p1,1(t), would be

d p1,1

dt
+ p1,1

β

La

[−p1,0F(t) + H(t)] = p1,0

β

La

[G(t) − I(t)] + β
[
G(t)p1,1 + F(t)p2

1,1

]
.

(A 1)

Equation (A 1) can be solved numerically employing a standard Runge–Kutta method
of the second order. In the following, we compare the analytical solution of (3.12)
presented in § 3 with the numerical solution of (A 1). Figure 17 shows the real part
of p1,1, plotted versus time, during 10 tidal cycles considering different initial values
of p1,1(t) for the fastest growing wavenumber (αx̂ = 0.375). The Keulegan–Carpenter
number is equal to 190, σ is set equal to 0.1 and the other parameters are equal to
those considered in figure 2. The solution of the nonlinear equation (A 1) and the
analytical solution are practically coincident, confirming that the term Lapn,1(t) is
negligible considering a small number of tidal cycles. Additionally, figure 17 shows
that the initial value of p1,1(t) does not qualitatively influence the sorting process
for large times. Moreover, it is found that the coefficient K0D0, which is chosen to
represent the sorting process, captures the qualitative characteristics of the resulting
grain size distribution.

Figure 18 illustrates the characteristics of the time development of the real part of
p1,1(t) described by (A 1) and the value of K0D0t for very large times, considering
the same input parameters as in figure 17 and p1,1(0) = (0, 0). The reader should
notice that in figure 18 the oscillations of p1,1 taking place during the tidal cycle are
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Figure 18. The values of the real part of p1,1(t) and K0D0t for the fastest growing

wavenumber (αx̂ = 0.375) plotted versus time for r̂ = 190, �̂ = 2.61 10−3, e =0.2, zr =
0.837 10−3, dmean,0 = 1.33 10−5, Ψmean = 2.74 10−3 and Rp,mean = 23.7. The graded sediment is
characterized by σ =0.1 and p1,1(0) = (0, 0) is considered. The continuous line corresponds to
the numerical solution of (A 1) and the broken line is K0D0t .

filtered out. The numerical integration of (A 1) shows that the value of p1,1 reaches
a periodic state after a long transient growth. This periodic state is attained when
p1,1(t) is so large that β[G(t)p1,1 + F(t)p2

1,1] is no longer negligible with respect to
the other terms appearing in (A 1). As shown in figure 18, this periodic state cannot
be described by (3.12). However, p1,1(t) attains this periodic state only after such a
large number of tidal cycles (∼ 60 000 tidal cycles) that the amplitude of the bottom
perturbations is expected to be large and a linear stability analysis to fail. Indeed,
the dimensional response time T ∗

Γ of the bed forms is of the order of 10 000 days
(∼ 20 000 tidal cycles). Hence, to predict sand wave appearance, it appears that the
transient behaviour should be investigated and not the periodic state.

Appendix B
The periodic functions F(t), G(t), H(t) and I(t) are given by

F(t) =

{
iαx

(
Q

(u)
x,1,0 − Q

(u)
x,2,0

)
+ iαy

(
Q

(u)
y,1,0 − Q

(u)
y,2,0

)
+ (d1 − d2)

[
iαx

(
p1,0

ˆ̂
Q

(u)

x,1,1 + p2,0
ˆ̂
Q

(u)

x,2,1

)
+ iαy

(
p1,0

ˆ̂
Q

(u)

y,1,1 + p2,0
ˆ̂
Q

(u)

y,2,1

)]}
, (B 1)

G(t) =
[
p1,0

(
iαxQ̂

(u)
x,1,1 + iαyQ̂

(u)
y,1,1

)
+ p2,0

(
iαxQ̂

(u)
x,2,1 + iαyQ̂

(u)
y,2,1

)]
, (B 2)

H(t) =

[
iαxQ

(u)
x,1,0 + iαyQ

(u)
y,1,0 + (d1 − d2)p1,0

(
iαx

ˆ̂
Q

(u)

x,1,1 + iαy
ˆ̂
Q

(u)

y,1,1

)]
, (B 3)

I(t) =
(
iαxQ̂

(u)
x,1,1 + iαyQ̂

(u)
y,1,1

)
. (B 4)
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